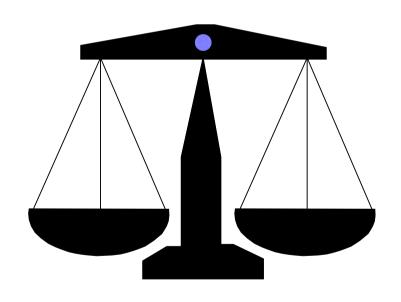


Olimpiadi di Chimica





Relazioni di massa nelle reazioni chimiche

Massa atomica è la massa di un atomo espressa in unità di massa atomica (uma)

Per definizione: 1 atomo ¹²C "pesa" 12 uma

Con questa scala

 $^{1}H = 1.008 \text{ uma}$

 $^{16}O = 16.00 \text{ uma}$

1 mol =
$$N_A$$
 = 6.0221367 x 10²³
Numero di Avogadro (N_A)

uova

Massa molare è la massa di 1 mole di scarpe in grammi atomi

Per ogni elemento

massa atomica (uma) = massa molare (grammi)

1 mole atomi
12
C = 6.022 x 10 23 atomi = 12.00 g
1 atomo 12 C = 12.00 uma

Un po' di calcoli...

N atomi = N moli *
$$N_A$$

$$N_A$$
 = numero di Avogadro

Quanti atomi ci sono in 0.551 g di potassio (K)?

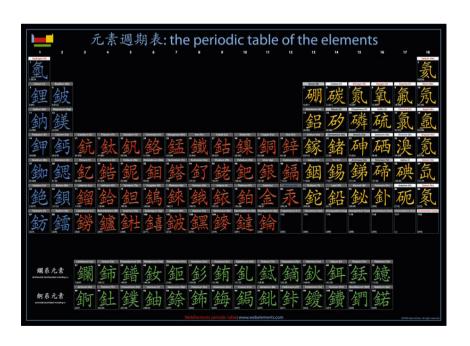
$$1 \text{ mol K} = 39.10 \text{ g K}$$

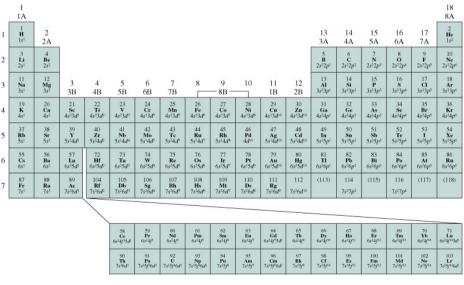
1 mol K =
$$6.022 \times 10^{23}$$
 atomi K

Quanti atomi ci sono in 0.551 g di potassio (K)?

1 mol K = 39.10 g K

1 mol K : 39.10 g K = x : 0,551 g K

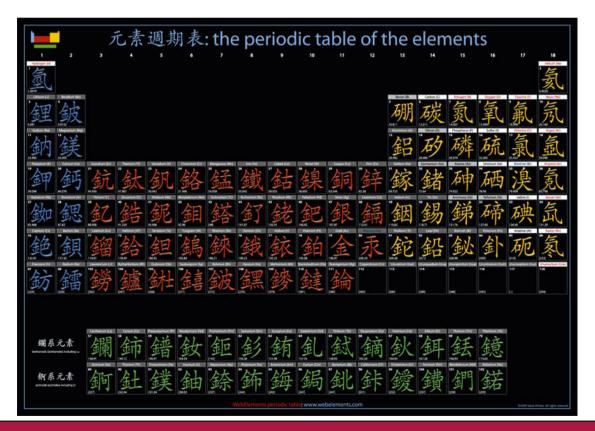

x = (1 mol K * 0,551 g K) / 39.10 g K = 0.014 moli


1 mol K = 6.022×10^{23} atomi K

1 mol K : 6.022×10^{23} atomi K = 0.014 mol K : y atomi K

8.49 x 10²¹ atomi K

Il numero di ossidazione



Nelle reazioni chimiche...

Gli elettroni coinvolti nelle reazioni fra gli atomi sono quelli esterni a più alta energia.

I composti più stabili sono i gas nobili.

Numero di ossidazione

Il numero di ossidazione di un elemento corrisponde alla carica che esso acquista o perde nel diventare ione...

Il numero di ossidazione dell'ossigeno è generalmente -2. Nell' H_2O_2 e O_2^{2-} è -1.

Il numero di ossidazione dell'idrogeno è +1 eccetto quando è legato ad un metallo in un composto binario. In questi casi, il suo numero di ossidazione è -1.

I metalli del Gruppo IA sono +1, i metalli IIA sono +2 e il fluoruro è sempre -1.

La somma dei numeri di ossidazione di tutti gli atomi in una molecola o in uno ione è uguale alla carica sulla molecola o sullo ione.

I numeri di ossidazione di tutti gli atomi in HCO₃-?

$$O = -2$$
 $H = +1$

$$3x(-2) + 1 + ? = -1$$

$$C = +4$$

Ossidi

Composti binari caratterizzati dalla presenza di metallo e ossigeno:

CaO: Ossido di calcio

K₂O: Ossido di potassio

Ossidi del Ferro

Il ferro ha numeri di ossidazione +2 e +3

Il metallo con numero di ossidazione più basso: -oso

FeO: ossido ferroso

Il metallo con numero di ossidazione più alto: -ico

Fe₂O₃: ossido ferrico

Perossidi

Due ossigeni legati tra loro... H₂O₂

Idrossidi

Sono caratterizzati dal gruppo ossidrile –OH-

NaOH Idrossido di sodio

Fe(OH)₂ idrossido ferroso

Fe(OH)₃ idrossido ferrico

Anidride

Sono caratterizzati dalla presenza di non metalli e ossigeno:

CO₂: anidride carbonica

CrO₃: anidride cromica

Se il non metallo ha:

- un solo numero di ossidazione: -ica
- due numeri di ossidazione: 1-4 –osa, 5-7 –ica
- SO₂ anidride solforosa; SO₃ anidride solforica
- due numeri di ossidazione: tutti e due tra 1-4 –ipo
- Cl₂O anidride ipoclorosa; Cl₂O₃ a. clorosa
- due numeri di ossidazione: tutti e due tra 5-7 –per
- MnO₃ anidride manganica; Mn₂O₇ a. permanganica

Acidi

Sono composti che in acqua producono ioni H⁺

- Idracidi
- Ossiacidi

Idracidi

Sono composti caratterizzati dalla presenza di idrogeno e un non metallo:

- -HCI Acido cloridrico
- -H₂S Acido solfidrico

Ossiacidi

Sono composti caratterizzati dalla presenza di idrogeno, ossigeno e un non metallo:

-H₂SO₄ Acido solforico

Sale

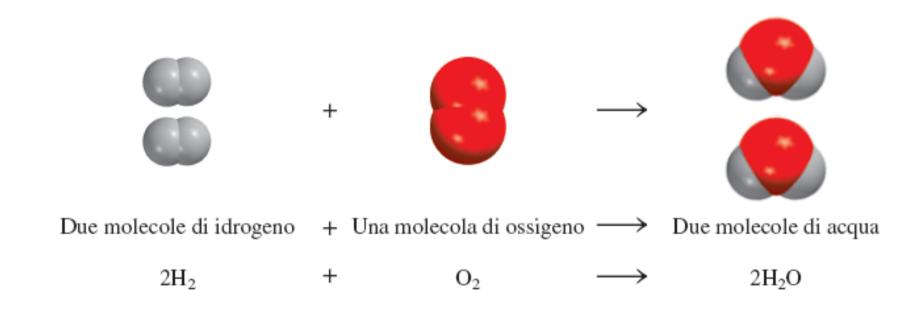
Sono composti che si ottengono per sostituizione parziale o totale degli idrogeni di un acido con uno ione metallico: NaCl da HCl

Suffisso acido Suffisso sale


-idrico -uro

-oso -ito

-ico -ato


Relazioni di massa nelle reazioni chimiche

Il processo nel quale una sostanza (o più sostanze) si trasforma in una (o più) sostanza differente è detto *reazione chimica*

Una equazione chimica utilizza simboli chimici per mostrare quello che avviene durante una reazione chimica

reagenti → prodotti

Come "leggere" un' equazione chimica

$$2 \text{ Mg} + \text{O}_2 \longrightarrow 2 \text{ MgO}$$

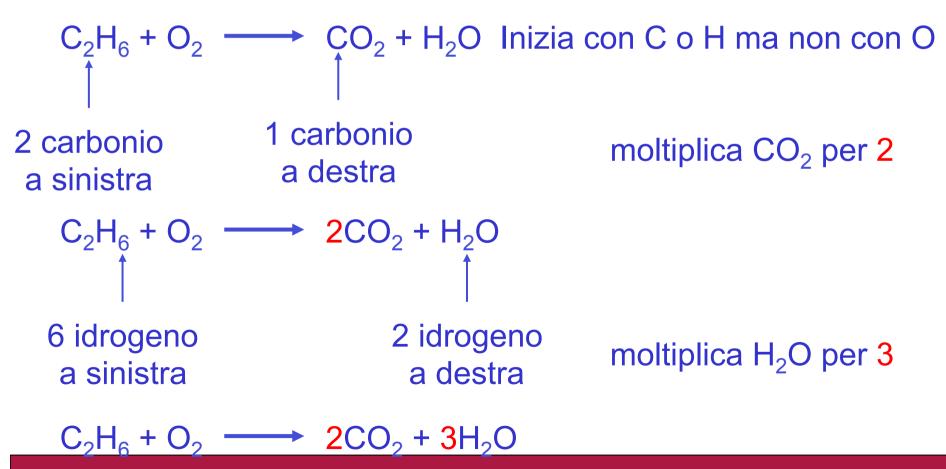
2 atomi Mg + 1 molecola O₂ danno 2 unità formula MgO

2 moli Mg + 1 mole O₂ danno 2 moli MgO

48.6 grammi Mg + 32.0 grammi O₂ danno 80.6 g MgO

* NON E'

2 grammi Mg + 1 grammo O₂ dà 2 grammi MgO


1. Scrivi la formula corretta per i reagenti e per i prodotti, che compaiono rispettivamente dal lato sinistro e destro dell'equazione.

L'etano reagisce con l'ossigeno per formare diossido di carbonio e acqua

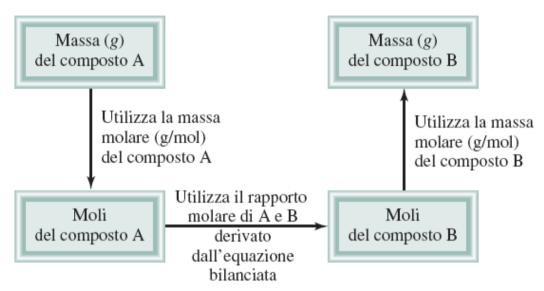
$$C_2H_6 + O_2 \longrightarrow CO_2 + H_2O$$

2. Cambia i numeri dinanzi alle formule chimiche (coefficienti stechiometrici) per ottenere lo stesso numero di atomi di ogni elemento da entrambi i lati dell'equazione. Non modificare gli indici.

3. Inizia a bilanciare gli elementi che appaiono in un solo reagente e prodotto.

4. Bilancia gli elementi che appaiono in due o più reagenti o prodotti.

$$C_2H_6 + O_2 \longrightarrow 2CO_2 + 3H_2O$$
 moltiplica O_2 per $\frac{7}{2}$


2 ossigeno 4 ossigeno + 3 ossigeno = 7 ossigeno a sinistra (2x2) (3x1) a destra

 $C_2H_6 + \frac{7}{2}O_2 \longrightarrow 2CO_2 + 3H_2O$ Rimuovi la frazione

 $2C_2H_6 + 7O_2 \longrightarrow 4CO_2 + 6H_2O$ Moltiplica per 2 da entrambi i lati

5. Controlla di avere lo stesso numero di ogni tipo di atomo da entrambi I lati dell'equazione.

Quantità di Reagenti e Prodotti

- 1. Scrivi l'equazione chimica bilanciata
- 2. Trasforma in moli le quantità note di sostanze
- Utilizza i coefficienti dell'equazione chimica bilanciata per calcolare il numero di moli delle sostanze in quantità non nota
- 4. Trasforma le moli delle sostanze nelle unità richieste

Il metanolo brucia in aria secondo l'equazione

$$2CH_3OH + 3O_2 \longrightarrow 2CO_2 + 4H_2O$$

Se 209 g di metanolo sono utilizzati per la combustione, quanta massa di acqua viene prodotta?

grammi
$$CH_3OH \longrightarrow moli CH_3OH \longrightarrow moli H_2O \longrightarrow grammi H_2O$$

massa molare

coefficienti massa molare CH₃OH equazione chimica H₂O

209 g CH₃OH x
$$\frac{1 \text{ mol CH}_3\text{OH}}{32.0 \text{ g CH}_3\text{OH}}$$
 x $\frac{4 \text{ mol H}_2\text{O}}{2 \text{ mol CH}_3\text{OH}}$ x $\frac{18.0 \text{ g H}_2\text{O}}{1 \text{ mol H}_2\text{O}}$ =