
La misura

DEFINIZIONE OPERATIVA STRUMENTO DI MISURA PROCEDURA DI MISURA

Esempio: lunghezza

la linea ha una lunghezza pari a 6 righelli +

Misura diretta/indiretta

Grandezze la cui misura è diretta

- definizione di un procedimento (ripetibile) di misura
- definizione di "campione" di riferimento e di unità di misura

grandezza fisica Esempi:

unità di misura

Lunghezza metro, pollice ("inch"),...

secondo Tempo

Massa chilogrammo, oncia,

Temperatura grado Celsius, grado Farenheit,

Grandezze la cui misura è indiretta ("grandezze derivate")

espresse come funzioni delle "grandezze dirette"

Esempi: Velocità, accelerazione, corrente elettrica,...

Fasi di una misura

- Quale grandezza misurare
 Scopo/decisione/modello
- Quale unità di misura adottare
 Convenienza/universalità/aspetti legali e scientifici/stabilità e ripetibilità
- Relazione fra la grandezza e l'udm Risoluzione/precisione/accuratezza
- Il mondo esterno è isolato?
 Influssi sullo strumento/ sul comparatore/sulla grandezza generano incertezza

Sistemi di unità di misura

- la scelta di un insieme di grandezze fisiche fondamentali e delle relative unità di misura
- Vi è un certo grado di arbitrarietà nella scelta
- Criteri: accessibilità e riproducibilità del campione di misura
- Storicamente, vi è una evoluzione nel tempo delle unità adottate (a seguito dell' evoluzione scientifica e tecnologica)
- Convenzione universalmente adottata (dal 1971):
 il "Sistema Internazionale di Unità di Misura"
 Periodicamente, la Conferenza Internazionale di Pesi e Misure aggiorna le definizioni e/o propone di adottarne di più accurate

Unità SI MKS

	Unità base SI		
Quantità base	Nome	Simbolo	
lunghezza	metro	m	
massa	kilogrammo	kg	
tempo	secondo	S	
corrente elettrica	ampere	Α	
temperatura termodinamica	kelvin	K	
quantità di sostanza	mole	mol	
intensità luminosa	candela	cd	

Il valore di una grandezza fisica è talvolta un numero molto grande o molto piccolo

Introduco multipli o sottomultipli delle unità di misura secondo potenze di dieci

Prefissi del Sistema Internazionale

```
1018
         Exa-
                     \mathbf{E}
1015
            Peta-
                      P
1012
          Tera-
                     T
109
                                - Gigabyte 10<sup>9</sup> bytes
          Giga-
                     G
106
          Mega-
                     \mathbf{M}
                                - Megabyte 10<sup>6</sup> bytes
10<sup>3</sup>
          Kilo-
                     k
10<sup>2</sup>
          Etto-
                     h
10<sup>1</sup>
          Deca-
                    D
10-1
          Deci-
                                - decimetro - 10<sup>-1</sup> m
                     d
10-2
          Centi-
                     c
10-3
          Milli-
                                 - millimetro 10<sup>-3</sup> m
                     m
10-6
          Micro-
                     μ
                                - nanosecondo 10<sup>-9</sup> s
10-9
          Nano-
                     n
                                - picosecondo 10<sup>-12</sup> s
10-12
          Pico-
                     p
10-15
          Femto- f
10-18
          Atto-
                     \mathbf{a}
```


Lunghezza

Per misurare una lunghezza è necessario un metro campione:

1799: **metro** è la 10⁻⁷ parte della distanza tra il Polo Nord e l'Equatore

→ 1960: **metro campione** è una sbarra di Platino Iridio a Parigi

- Ma .. Parigi è lontana dai laboratori del mondo
- Ma .. la sbarra di Parigi non è proprio 1/10⁷ la distanza Polo Nord Equatore (è sbagliata dello 0.023%)

Nuova definizione:

 \rightarrow 1983: 1 m = 1 650 763.73 volte la lunghezza d'onda della luce rosso-arancione emessa dal 86 Kr

1983: 1 m = distanza percorsa dalla luce nel vuoto in un intervallo di tempo pari a 1/299792458 di secondo

Limiti sperimentali:

- Direttamente è possibile misurare lunghezze fino a 10 nm
- In fisica entrano in gioco circa 40 ordini di grandezza

10⁻¹⁵ m Dimensione di un nucleo (Idrogeno/Protone)

1.4 10²⁶ m Distanza tra la Terra e la Quasar più lontana

Scala delle lunghezze

Distanza Terra-Sole

Distanza Terra-Luna

Dimensione di un virus

Diametro del protone

Diametro dell'elettrone

Raggio atomico

Diametro orbite satelliti artificiali

Grandezza	Lunghezza(m)
Limite dell'Universo Distanza dalla galassia di Andromeda Raggio della nostra galassia Distanza dalla stella piu' vicina	~ 10 ²⁶ 2.1 10 ²² 6 10 ¹⁹ 4 10 ¹⁶
Anno luce	9.5 10 ¹⁵

 $1.5 10^{11}$

 $3.8 10^8$

~ 106

~ 10⁻⁷

5 10-11

2 10-15

< 10⁻¹⁸

Aitezza ai una torre	10-
Altezza di un bambino	1
Dimensione di pulviscolo	10-4

Massa

Per misurare una massa è necessario una massa campione:

Il Campione di massa è un cilindro di platino iridio depositato a Parigi

- Ma .. Parigi è lontana dai laboratori del mondo
- Bisogna fare delle copie $\mbox{la precisione \grave{e}} \sim 10^{-8} \ kg... \ troppo \ poco$

Nuova definizione:.... Non c'è ancora!

In fisica atomica/nucleare/particelle si usa unità di massa atomica u

 $1 \text{ u} = 1/12 \text{ del peso di un atomo di }^{12}\text{C}$

La Relazione u - Kg non è però nota con estrema precisione

$$1 \text{ u} = 1.6605402 \text{ } 10^{-27} \text{ Kg} \text{ (troppo imprecisa)}$$

in fisica entrano in gioco circa 83 ordini di grandezza:

$$m_{elettrone} \sim 9 \ 10^{-31} \ Kg \rightarrow m_{universo} \sim 10^{53} \ Kg$$

la massa ha una definizione **dinamica** (massa inerziale) ed una definizione **gravitazionale** (massa gravitazionale)

$$\overline{F} = m_{in} \overline{a}$$
 $m_{in} \Rightarrow$ massa inerziale

$$\overline{F} = G \frac{m_1 m_2}{r^2} \hat{r}$$
 $m_1, m_2 \Rightarrow$ massa gravitazionale

La teoria della relatività generale ha come **ipotesi** di partenza che la massa inerziale e quella gravitazionali siano esattamente la stessa cosa

Scala delle masse

Grandezza	Massa(Kg)
Universo osservabile	~10 ⁵⁵
Una galassia	1041
Sole	2 10 ³⁰
Giove	1.9 10 ²⁷
Terra	6 10 ²⁴
Luna	7.4 10 ²²
Transatlantico	7 10 ⁷
Automobile	$1.5 \ 10^3$
Uomo	7 10
Matita	2 10-2
Goccia di pioggia	2 10-6
Granello di polvere	10-10
Virus	~10-14
Molecola di penicillina	5 10 ⁻¹⁷
Atomo di idrogeno	1.7 10 ⁻²⁷
Elettrone	9.1 10 ⁻³¹

Tempo

- Ciò che si misura non è il tempo ma piuttosto un intervallo di tempo
- Per misurare un tempo è necessario un orologio, cioè un oggetto che conta qualcosa, p.e. le oscillazioni di un fenomeno periodico
 - pendolo (1'errore è circa di un secondo per anno)
 - rotazione della terra (l'errore è circa di 1 ms ogni giorno)
 - un quarzo (l'errore è circa di 1 s ogni 10 anni)

Nuova definizione:

orologio atomico Cs (errore circa 1 s ogni 300000 anni)

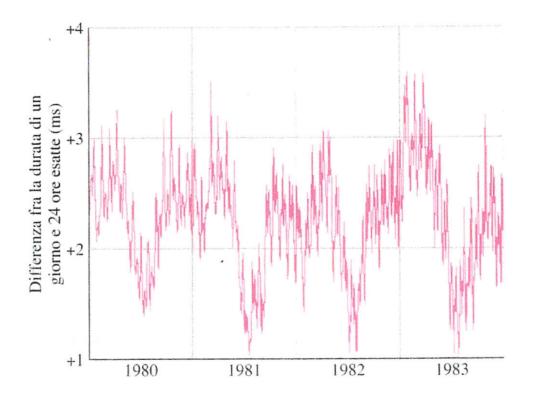
1 secondo = 9 192 631 770 oscillazioni

della radiazione emessa dal cesio

Maser a idrogeno (errore 1 s ogni 30 10⁶ anni)

Limiti sperimentali:

- Direttamente è possibile misurare intervalli di tempo fino a 10 ps
- In fisica entrano in gioco circa 60 ordini di grandezza



10⁻²³ - 10²⁷ s Fenomeni nucleari

5 10¹⁷ s Vita dell'universo

variazioni della lunghezza del giorno [sulla base della rotazione terrestre]

scarto giornaliero [rispetto alla media] ≈ 3 ms

$$\frac{0.003s}{60 \cdot 60 \cdot 24} = \frac{0.003s}{86400} = 3.47 \cdot 10^{-8} = 0.00000347\%$$

Variazione percentuale giornaliera

Scala dei tempi

Grandezza	Tempo	o(s)
Eta' dell'Universo	~5	1017
Comparsa dell'uomo sulla terra		1014
Durata della vita umana	2	10 ⁹
Rivoluzione della terra (un anno)	3.2	10 ⁷
Durata del giorno	8.6	104
Tempo impiegato dalla luce per il tragitto Sole-Terra	5	10 ²
Battito cardiaco normale	8	10-1
Periodo di un'onda sonora	2	10-3
Periodo di un'onda radio		~ 10⁻ ⁶
Periodo delle rotazioni molecolari		10-12
Periodo di vibrazioni atomiche		10-15
Periodo della radiazione X	~3	10 ⁻¹⁹
Tempo di attraversamento di un protone da parte della lu		10-23
Tempo di attraversamento di un elettrone da parte della	luce	<10 ⁻²⁶

Densità

massa per unità di volume

$$\rho \equiv \frac{m}{V}$$

In fisica entrano in gioco circa 40 ordini di grandezza

Sostanza od oggetto	Massa volumica (kg/m ³)
Spazio interstellare	10^{-20}
Massimo «vuoto» raggiungibile in laboratorio	10^{-17}
Aria: a 20 °C e 1 bar	1.21
a 20 °C e 50 bar	60.5
Polistirolo espanso	$3 \cdot 10^{1}$
Acqua: a 20 °C e 1 bar	$0.998 \cdot 10^{3}$
a 20 °C e 50 bar	$1.000 \cdot 10^{3}$
Acqua del mare: a 20 °C e 1 bar	$1.024 \cdot 10^{3}$
Sangue	$1.060 \cdot 10^3$
Ghiaccio	$0.917 \cdot 10^3$
Ferro	$7.9 \cdot 10^3$
Mercurio	$13.6 \cdot 10^3$
Terra: valor medio	$5.5 \cdot 10^3$
nucleo	$9.5 \cdot 10^{3}$
crosta	$2.8 \cdot 10^{3}$
Sole: valor medio	$1.4 \cdot 10^{3}$
nucleo	$1.6 \cdot 10^{5}$
Stella nana bianca (nucleo centrale)	10 10
Nucleo dell'uranio	$3 \cdot 10^{17}$
Stella di neutroni (nucleo centrale)	10^{18}
Buco nero (1 massa solare)	1019

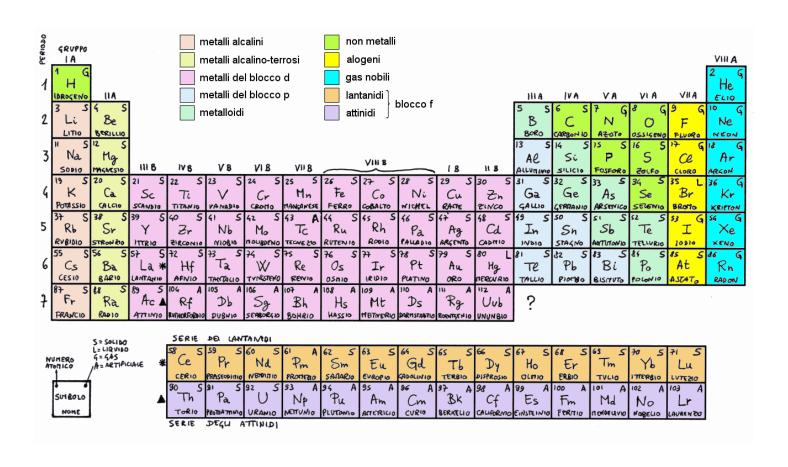
massa atomica = (N+Z) u = A u

 $(m \ atomica)_{Al} = 27 \ u$ $(m \ atomica)_{Pb} = 207 \ u \implies m_{Pb}/m_{Al} = 7.67$ discrepanza dovuta a distanze fra atomi e $\rho_{Al} = 2.7 \ 10^3 \ kg/m^3 \implies \rho_{Pb}/\rho_{Al} = 4.19$ a struttura cristallina

mole = quantità di sostanza che contiene numero di atomi/molecole pari al **numero di Avogadro** $N_A = 6.022 \ 10^{23}$

> il Numero di Avogadro è definito tale che 1 mole ¹²C abbia massa pari a 12 g

mole = quantità di sostanza che contiene numero di atomi/molecole pari al numero di Avogadro $N_A = 6.022 \ 10^{23}$


il Numero di Avogadro è definito tale che 1 mole ¹²C abbia massa pari a 12 g

Calcolo del numero di moli di una sostanza di massa M_{camp} :

$$n = \frac{M_{camp}}{M}$$
 $M_{camp} = massa sostanza$ $M = peso di una mole$ [peso molare] $M = m N_A$ $M = massa di una molecola$

Il **peso M** di una mole di una sostanza si ricava dalla **tabella periodica** degli elementi

Tavola periodica degli elementi [Tavola di Mendeleev]

elementi con simili **proprietà chimico-fisiche** appaiono nella **stessa colonna**

Unità di misura fondamentali (CGS)

- Lunghezza	centimetro	[cm]	= 10 ⁻² m
- Massa	grammo	[gr]	= 10 ⁻³ kg
- Tempo	secondo	[s]	
- Forza	dyne	[dyn]	= 10-5 N
- Energia	erg	[erg]	= 10-7 J
- Potenza	erg*sec	[erg*sec]	= 10-7 W
- Pressione	barye	[Ba]	= 10 ⁻¹ Pa
- Viscosità	poise	[P]	= 10 ⁻¹ Pa*s

Analisi Dimensionale

dimensione → denota la natura fisica di una grandezza; ad ogni grandezza associo una unità di misura

le dimensioni possono essere trattate come grandezze algebriche:

posso sommare e sottrarre solo grandezze con le stesse dimensioni

esempio: i metri si possono sommare solo ai metri non posso sommare m con Km o con s!

ogni equazione deve essere dimensionalmente corretta:

ciascun membro di un'equazione deve avere le **stesse** dimensioni

$$\begin{array}{ll} Lunghezza \mapsto [L] & \mapsto m \\ Massa & \mapsto [M] \mapsto Kg \\ Tempo & \mapsto [T] & \mapsto s \end{array}$$

esempio:

legge oraria $x = \frac{1}{2} a t^2$

Dimensioni $[L]=[L/T^2][T^2]$

unità di misura $m = m/s^2 \cdot s^2 = m$

Attenzione

Numero Puro = Numero senza dimensione gli argomenti di esponenziali, seni, coseni, logaritmi ..

sono sempre numeri puri!

Conversione delle unità di misura

Le unità di misura si trattano come grandezze algebriche

esempio 1

Se un serbatoio di automobile contiene inizialmente 8.01 litri di benzina e viene introdotta benzina alla rapidità di 28.00 litri/minuto, quanta benzina contiene il serbatoio dopo 96 secondi ?

Benzina = Benzina iniziale + Benzina aggiunta

Benzina =
$$8.01 \text{ litri} + \left(28.00 \frac{\text{litri}}{\text{minuto}}\right) \left(96 \text{ secondi}\right) = 8.01 \text{ litri} + \left(2688 \frac{\text{litri}}{\text{minuto}} \text{ secondi}\right)$$
Benzina = $8.01 \text{ litri} + 2688 \frac{\text{litri}}{60 \text{ secondi}} \text{ secondi}$ = $8.01 \text{ litri} + 44.8 \frac{\text{litri}}{\text{secondi}} \text{ secondi}$

Benzina = 8.01 litri + 44.8 litri = 52.81 litri

esempio 2

L'Antartide è di forma quasi circolare, con raggio di 2000 Km. Lo spessore medio dello strato di ghiaccio che la ricopre è di 3000 m. Quanti cm³ di ghiaccio contiene l'Antartide?

Volume
$$= \frac{1}{2} (\pi r^2 \cdot h)$$

$$= \frac{1}{2} (\pi (2 \cdot 10^6)^2 \cdot 3 \cdot 10^3) m^3$$

$$\approx 1.9 \cdot 10^{16} m^3 = 1.9 \cdot 10^{16} (10^2 cm)^3$$

$$= 1.9 \cdot 10^{22} cm^3$$

esempio 3

Un'automobile viaggia ad una velocità di 90 km/h, quant'è la sua velocità in m/s?

$$1 \text{Km} = 1000 \text{ m} = 10^3 \text{ m}$$

$$1 \text{h} = 3600 \text{ s}$$

$$90 \frac{\text{Km}}{\text{h}} = \frac{10^3 \text{m}}{3600 \text{ s}} = \frac{90 \text{ m}}{3.6 \text{ s}}$$

Per passare da Km/h a m/s devo dividere per 3.6

Per passare da m/s a Km/h devo moltiplicare per 3.6

esempio 4

La densità dell'Alluminio è 2.7 g/cm³. Quant'è la sua densità se la esprimiamo in Kg/m³ ?

Per passare da g/cm³ a Kg/m³ devo moltiplicare per 1000

Per passare da Kg/m³ a g/cm³ devo dividere per 1000